\(\int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx\) [748]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 105 \[ \int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx=\frac {4 a^2 (i A+B) (c-i c \tan (e+f x))^{7/2}}{7 f}-\frac {2 a^2 (i A+3 B) (c-i c \tan (e+f x))^{9/2}}{9 c f}+\frac {2 a^2 B (c-i c \tan (e+f x))^{11/2}}{11 c^2 f} \]

[Out]

4/7*a^2*(I*A+B)*(c-I*c*tan(f*x+e))^(7/2)/f-2/9*a^2*(I*A+3*B)*(c-I*c*tan(f*x+e))^(9/2)/c/f+2/11*a^2*B*(c-I*c*ta
n(f*x+e))^(11/2)/c^2/f

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {3669, 78} \[ \int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx=-\frac {2 a^2 (3 B+i A) (c-i c \tan (e+f x))^{9/2}}{9 c f}+\frac {4 a^2 (B+i A) (c-i c \tan (e+f x))^{7/2}}{7 f}+\frac {2 a^2 B (c-i c \tan (e+f x))^{11/2}}{11 c^2 f} \]

[In]

Int[(a + I*a*Tan[e + f*x])^2*(A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(7/2),x]

[Out]

(4*a^2*(I*A + B)*(c - I*c*Tan[e + f*x])^(7/2))/(7*f) - (2*a^2*(I*A + 3*B)*(c - I*c*Tan[e + f*x])^(9/2))/(9*c*f
) + (2*a^2*B*(c - I*c*Tan[e + f*x])^(11/2))/(11*c^2*f)

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 3669

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(a c) \text {Subst}\left (\int (a+i a x) (A+B x) (c-i c x)^{5/2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {(a c) \text {Subst}\left (\int \left (2 a (A-i B) (c-i c x)^{5/2}-\frac {a (A-3 i B) (c-i c x)^{7/2}}{c}-\frac {i a B (c-i c x)^{9/2}}{c^2}\right ) \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {4 a^2 (i A+B) (c-i c \tan (e+f x))^{7/2}}{7 f}-\frac {2 a^2 (i A+3 B) (c-i c \tan (e+f x))^{9/2}}{9 c f}+\frac {2 a^2 B (c-i c \tan (e+f x))^{11/2}}{11 c^2 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.76 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.99 \[ \int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx=\frac {a^2 c^4 \sec ^6(e+f x) (121 i A-33 B+(121 i A+93 B) \cos (2 (e+f x))+(-77 A+105 i B) \sin (2 (e+f x))) (\cos (4 (e+f x))-i \sin (4 (e+f x)))}{693 f \sqrt {c-i c \tan (e+f x)}} \]

[In]

Integrate[(a + I*a*Tan[e + f*x])^2*(A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(7/2),x]

[Out]

(a^2*c^4*Sec[e + f*x]^6*((121*I)*A - 33*B + ((121*I)*A + 93*B)*Cos[2*(e + f*x)] + (-77*A + (105*I)*B)*Sin[2*(e
 + f*x)])*(Cos[4*(e + f*x)] - I*Sin[4*(e + f*x)]))/(693*f*Sqrt[c - I*c*Tan[e + f*x]])

Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.80

method result size
derivativedivides \(\frac {2 i a^{2} \left (-\frac {i B \left (c -i c \tan \left (f x +e \right )\right )^{\frac {11}{2}}}{11}+\frac {\left (3 i B c -c A \right ) \left (c -i c \tan \left (f x +e \right )\right )^{\frac {9}{2}}}{9}+\frac {2 \left (-i B c +c A \right ) c \left (c -i c \tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}\right )}{f \,c^{2}}\) \(84\)
default \(\frac {2 i a^{2} \left (-\frac {i B \left (c -i c \tan \left (f x +e \right )\right )^{\frac {11}{2}}}{11}+\frac {\left (3 i B c -c A \right ) \left (c -i c \tan \left (f x +e \right )\right )^{\frac {9}{2}}}{9}+\frac {2 \left (-i B c +c A \right ) c \left (c -i c \tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}\right )}{f \,c^{2}}\) \(84\)
parts \(\frac {2 i A \,a^{2} c \left (-\frac {\left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}-\frac {2 c \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}}}{3}-4 \sqrt {c -i c \tan \left (f x +e \right )}\, c^{2}+4 c^{\frac {5}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )\right )}{f}+\frac {a^{2} \left (2 i A +B \right ) \left (\frac {2 \left (c -i c \tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}+\frac {2 c \left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}+\frac {4 \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}} c^{2}}{3}+8 \sqrt {c -i c \tan \left (f x +e \right )}\, c^{3}-8 c^{\frac {7}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )\right )}{f}-\frac {2 B \,a^{2} \left (-\frac {\left (c -i c \tan \left (f x +e \right )\right )^{\frac {11}{2}}}{11}+\frac {c \left (c -i c \tan \left (f x +e \right )\right )^{\frac {9}{2}}}{9}-\frac {c^{2} \left (c -i c \tan \left (f x +e \right )\right )^{\frac {7}{2}}}{7}-\frac {c^{3} \left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}-\frac {2 \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}} c^{4}}{3}-4 \sqrt {c -i c \tan \left (f x +e \right )}\, c^{5}+4 c^{\frac {11}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )\right )}{f \,c^{2}}-\frac {2 i a^{2} \left (-2 i B +A \right ) \left (\frac {\left (c -i c \tan \left (f x +e \right )\right )^{\frac {9}{2}}}{9}+\frac {c^{2} \left (c -i c \tan \left (f x +e \right )\right )^{\frac {5}{2}}}{5}+\frac {2 \left (c -i c \tan \left (f x +e \right )\right )^{\frac {3}{2}} c^{3}}{3}+4 \sqrt {c -i c \tan \left (f x +e \right )}\, c^{4}-4 c^{\frac {9}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c -i c \tan \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right )\right )}{f c}\) \(489\)

[In]

int((a+I*a*tan(f*x+e))^2*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(7/2),x,method=_RETURNVERBOSE)

[Out]

2*I/f*a^2/c^2*(-1/11*I*B*(c-I*c*tan(f*x+e))^(11/2)+1/9*(3*I*B*c-c*A)*(c-I*c*tan(f*x+e))^(9/2)+2/7*(-I*B*c+c*A)
*c*(c-I*c*tan(f*x+e))^(7/2))

Fricas [A] (verification not implemented)

none

Time = 0.42 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.42 \[ \int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx=-\frac {32 \, \sqrt {2} {\left (99 \, {\left (-i \, A - B\right )} a^{2} c^{3} e^{\left (4 i \, f x + 4 i \, e\right )} + 11 \, {\left (-11 i \, A + 3 \, B\right )} a^{2} c^{3} e^{\left (2 i \, f x + 2 i \, e\right )} + 2 \, {\left (-11 i \, A + 3 \, B\right )} a^{2} c^{3}\right )} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}}{693 \, {\left (f e^{\left (10 i \, f x + 10 i \, e\right )} + 5 \, f e^{\left (8 i \, f x + 8 i \, e\right )} + 10 \, f e^{\left (6 i \, f x + 6 i \, e\right )} + 10 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 5 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \]

[In]

integrate((a+I*a*tan(f*x+e))^2*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

-32/693*sqrt(2)*(99*(-I*A - B)*a^2*c^3*e^(4*I*f*x + 4*I*e) + 11*(-11*I*A + 3*B)*a^2*c^3*e^(2*I*f*x + 2*I*e) +
2*(-11*I*A + 3*B)*a^2*c^3)*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))/(f*e^(10*I*f*x + 10*I*e) + 5*f*e^(8*I*f*x + 8*I*e
) + 10*f*e^(6*I*f*x + 6*I*e) + 10*f*e^(4*I*f*x + 4*I*e) + 5*f*e^(2*I*f*x + 2*I*e) + f)

Sympy [F]

\[ \int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx=- a^{2} \left (\int \left (- A c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c}\right )\, dx + \int \left (- 2 A c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{2}{\left (e + f x \right )}\right )\, dx + \int \left (- A c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{4}{\left (e + f x \right )}\right )\, dx + \int \left (- B c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )}\right )\, dx + \int \left (- 2 B c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{3}{\left (e + f x \right )}\right )\, dx + \int \left (- B c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{5}{\left (e + f x \right )}\right )\, dx + \int i A c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan {\left (e + f x \right )}\, dx + \int 2 i A c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{3}{\left (e + f x \right )}\, dx + \int i A c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{5}{\left (e + f x \right )}\, dx + \int i B c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{2}{\left (e + f x \right )}\, dx + \int 2 i B c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{4}{\left (e + f x \right )}\, dx + \int i B c^{3} \sqrt {- i c \tan {\left (e + f x \right )} + c} \tan ^{6}{\left (e + f x \right )}\, dx\right ) \]

[In]

integrate((a+I*a*tan(f*x+e))**2*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))**(7/2),x)

[Out]

-a**2*(Integral(-A*c**3*sqrt(-I*c*tan(e + f*x) + c), x) + Integral(-2*A*c**3*sqrt(-I*c*tan(e + f*x) + c)*tan(e
 + f*x)**2, x) + Integral(-A*c**3*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**4, x) + Integral(-B*c**3*sqrt(-I*c
*tan(e + f*x) + c)*tan(e + f*x), x) + Integral(-2*B*c**3*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**3, x) + Int
egral(-B*c**3*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**5, x) + Integral(I*A*c**3*sqrt(-I*c*tan(e + f*x) + c)*
tan(e + f*x), x) + Integral(2*I*A*c**3*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**3, x) + Integral(I*A*c**3*sqr
t(-I*c*tan(e + f*x) + c)*tan(e + f*x)**5, x) + Integral(I*B*c**3*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**2,
x) + Integral(2*I*B*c**3*sqrt(-I*c*tan(e + f*x) + c)*tan(e + f*x)**4, x) + Integral(I*B*c**3*sqrt(-I*c*tan(e +
 f*x) + c)*tan(e + f*x)**6, x))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.74 \[ \int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx=-\frac {2 i \, {\left (63 i \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {11}{2}} B a^{2} + 77 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {9}{2}} {\left (A - 3 i \, B\right )} a^{2} c - 198 \, {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {7}{2}} {\left (A - i \, B\right )} a^{2} c^{2}\right )}}{693 \, c^{2} f} \]

[In]

integrate((a+I*a*tan(f*x+e))^2*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

-2/693*I*(63*I*(-I*c*tan(f*x + e) + c)^(11/2)*B*a^2 + 77*(-I*c*tan(f*x + e) + c)^(9/2)*(A - 3*I*B)*a^2*c - 198
*(-I*c*tan(f*x + e) + c)^(7/2)*(A - I*B)*a^2*c^2)/(c^2*f)

Giac [F]

\[ \int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx=\int { {\left (B \tan \left (f x + e\right ) + A\right )} {\left (i \, a \tan \left (f x + e\right ) + a\right )}^{2} {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+I*a*tan(f*x+e))^2*(A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(7/2),x, algorithm="giac")

[Out]

integrate((B*tan(f*x + e) + A)*(I*a*tan(f*x + e) + a)^2*(-I*c*tan(f*x + e) + c)^(7/2), x)

Mupad [B] (verification not implemented)

Time = 11.86 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.26 \[ \int (a+i a \tan (e+f x))^2 (A+B \tan (e+f x)) (c-i c \tan (e+f x))^{7/2} \, dx=\frac {32\,a^2\,c^3\,\sqrt {c+\frac {c\,\left ({\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}+1}}\,\left (A\,22{}\mathrm {i}-6\,B+A\,{\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}\,121{}\mathrm {i}+A\,{\mathrm {e}}^{e\,4{}\mathrm {i}+f\,x\,4{}\mathrm {i}}\,99{}\mathrm {i}-33\,B\,{\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}+99\,B\,{\mathrm {e}}^{e\,4{}\mathrm {i}+f\,x\,4{}\mathrm {i}}\right )}{693\,f\,{\left ({\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}+1\right )}^5} \]

[In]

int((A + B*tan(e + f*x))*(a + a*tan(e + f*x)*1i)^2*(c - c*tan(e + f*x)*1i)^(7/2),x)

[Out]

(32*a^2*c^3*(c + (c*(exp(e*2i + f*x*2i)*1i - 1i)*1i)/(exp(e*2i + f*x*2i) + 1))^(1/2)*(A*22i - 6*B + A*exp(e*2i
 + f*x*2i)*121i + A*exp(e*4i + f*x*4i)*99i - 33*B*exp(e*2i + f*x*2i) + 99*B*exp(e*4i + f*x*4i)))/(693*f*(exp(e
*2i + f*x*2i) + 1)^5)